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Models of single filtration waves, which can be used in problems of intensifi- 
cation of the development and investigation of oil-gas strata, are considered. 

I. Hydrodynamic Waves. A structurally nonequilibrium relaxation fluid is considered 
whose filtration velocity due to the pressure gradient (Px) is described by the relation- 
ship 

W = -- ~ {Z n -- ~ [(zn)t - -  (g n )~ 1} Px/Z; ( 1 .  l )  

z = ]P=I, ~ = v / k z ,  n > 1, k = c o n s t  : >  0 

(~, v are the mobility and nonequilibrium coefficients). 

The equilibrium flow of the system W=W 0=-%znpx/z is pseudoplastic; in the nonequi- 
librium state the fluid opposes the change in flow velocity Wo in time if the vectors w and 
Px are codirectional (v > 0), and accelerates the flow in case the vectors v and p• < 0) 
are opposite in direction, independently of whether the pressure gradient increases of de- 
creases in proportion to its rate of change (zn)t . 

Flows are considered that satisfy W * Wo as z + zo = const(t) with the asymptotic 
(zn) t T (zn)~ = zaconst(a ~I) which is not certainly zero for zo # 0, and with the charac- 
teristic relaxation time for the nonequilibrium effects r at each point of the system, in- 
versely proportional to the pressure gradient or Darcy flow velocity (Iz) at this same point. 

The continuity equation for the elastic filtration mode of a slightly compressible fluid 
in an elastically deformable porous medium (e.g., [I]) 

(mp)t = - -  (pW) .  ~ 0o (W)x; s = Po~P, ( 1 . 2 )  

m, Po, L 8 = const :>  0 

results for a = 1 in the relationship 

Pt  = •  P [(zn)t/z]x; • = k lm~ ,  ~ = v l m ~ ,  ( 1 . 3 )  

which is invariant relative to the coordinate transformation (x; t)~==>--x; t) (by assumption 

the direction of the vectors ~ and O/Ox is interrelated). 

Here P and p are understood to be the differences between the running and initial pres- 
sures and the fluid densities corresponding to these pressures. 

Let us define (1.3) in the form of stationary single waves P(~), ~ = x + Ut in a system 
(O/Ox = 0/0~, O/Ol = UO/O~) moving with the wave velocity U 

- -  ~U [(z~)~z]~ ~ • (zn)~ - -  k U P ~  = O. ( 1 . 4 )  

(The coefficient k is introduced forcovenience of subsequent analogies in Sec. 2 with tempera- 
ture waves, but k~l in Sec. i). 

After a single integration of (1.4) with respect to ~ with ~(zn) Uz = ~(zn)p, ~.P~ = 

~z > 0, ~ > 0 taken into account for an inertial counteraction and ~.p~ = ~ < O, ~ <0 for ac- 
celeration, we have 

- -  ~ U  (z  ~ )p  § ~ z  ~ - -  k U P  = S = c o n s t  ( 1 . 5 )  

M. Azizbekov Azerbaidzhan Institute of Oil and Chemistry, Baku. A. V. Lykov Institute 
of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsko Translated from 
Inzhenerno-FizicheskiiZhurnal, Vol. 43, No. 6, pp. 999-1006, December, 1982. Original article sub- 
mitted November 24, 1981. 

0022-0841/82/4306-1407507.50 �9 1983 Plenum Publishing Corporation 1407 



YA 

o I~ii IYI 

Fig. i. Form of the dependences @(Y), ~:(y), 

9 ( Y ) ,  and , ( IYI) .  
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F i g .  2. P h a s e  t r a j e c t o r i e s  z n ( y ) ,  P ~ ( y ) ,  z n ( p )  
and  P g ( P )  f o r  w a v e s  o f  t h e  t y p e  1 ,  2, 3 ,  4 a c c o r d -  
i n g  to  ( 1 . 6 ) .  
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Fig 3. Characteristic form of the solution (1.7) 
for waves of the type i, 2, 3, 4, and their corre- 
sponding phase portraits. 

/ 

By~isfying the conditions P = 0, z = 0, and P = P~, z = 0, taken, respectively, at the 
~o~ter boundaries of the perturbation wave and at its"maximum, we defined z[P(~)] in the 
form 

z n =  E ~ ( P ) ~ O ,  E = - - k U P , / •  ( 1 . 6 )  

--- ob 1 -  cD, (D = Y / Y , ,  (D: - -  (exp Y - -  1)/(exp Y ,  - -  1), 

Y = bP, Y ,  - -  b P . ,  b ~- •  S = - -  kU [1 - -  Y./(exp Y ,  - -  1)]/b. 

For Y ~0 (Y* > 0, Y,< 0, respectively) the functions (D~, (Dare nonnegative on the 
segments [0; • Their difference q0 vanishes at the ends of the segments (P = 0, (D: = 
(D= 0; P = P,, (Dz~(D = i), is negative for Y > O, (DI=(D~ > 0, ~=(D~--(D~-< 0, and 
positive for Y < 0, (D:=(DI-~0, ~(DI---(D~- > 0 (Fig. i). 
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+ 
Equality of the angles Iq+,y(0)] = }~,Y(]Y,i) ; ]r I) = k~7,y(0)i; !Wy(IY, I) = 

l~y(0) I; I~(0)] = i~y([Y.I)] and relating relationships of the form Irmi+ + ]Yml - = ]Y,! 

~t~ ~-q~ = 0, at points for the maximum of the functions ~P~, ~P- hold. 

The condition z n > 0 within the intervals (0; • and z n = 0 at their endpoints P = 

0 and P = P, (P, # 0) is satisfied for D > 0 for the combinations: i) U > 0, P, P,~0 (on 
the branch,-); 2) U~0, P, P, > 0 (on the branch 9-), 3) U > 0, P, P*> 0 (on(p+); 4) U ~ 
0, P, P, ~0 (on ~+). For ~ < 0 the condition mentioned is not assured for any nonzero, 
bounded U, P, P,, and single waves are not formed in the system (i.i) and (1.2) (forces 
counteracting wave spreading are here replaced by oppositely directed waves). 

The phase trajectories of (1.6) with z = • taken into account possess symmetry with 

respect to the Y and P axes, and the functions Iq~] + [(p]-, which vary, respectively, in [0; 
+ Y, ] and [--IY, I; 0], are governed by the conditions i), 2), 3), 4) on the segments [0; 
• P, ] each (Fig. 2). Here P~ = 0, z n = 0, (P~)p = • 0 ~ !(zn)pl ~ ~ hold at the point 

P = 0 and P = P, for all combinations i), 2), 3), 4). 

The solution (1.5) in the form of the divergent integral 

P 

. I~ (P)I ~/~ = • IEI~/~; 0 ~ IP[ ~ ]P.[, ( 1 . 7 )  

P. 

w r i t t e n  f o r  a n  a r b i t r a r y  c o m b i n a t i o n  1 ,  2, 3, 4 s a t i s f i e s  t h e  c o n d i t i o n  P = 0, ~ ( 0 )  = 0, ~ = 
_+~ and  P = P , ,  ~ ( P , )  = 0, ~ = 0 f o r  e a c h  a nd  h a s  t h e  fo rm o f  s i n g l e  w a v e s .  

The c h a r a c t e r i s t i c  s h a p e  o f  t h e  waves  fo rmed  by an  i n i t i a l  p u l s e  on  t h e  a x i s  x = 0 i s  
shown i n  F i g .  3. Here  2 and  3 a r e  a d i v e r g i n g  n o n s y m m e t r i c  p a i r  o f  waves  u n d e r  p u l s e  pump- 
i n g ;  1 and  4 a r e  f o r  p u l s e  s e l e c t i o n ;  1,  2 a nd  3, 4 a r e  s y m m e t r i c  p a i r s  o f  waves  u n d e r  s h o c k  
a c t i o n  (number  of  t h e  c u r v e s  c o r r e s p o n d s  to t h e  c o m b i n a t i o n s  p r e s e n t e d  i n  t h e  t e x t ;  t h e  
p o i n t s  ~+  c o r r e s p o n d  to  t h e  i n f l e c t i o n s  o f  t h e  c u r v e s  P ( ~ )  a c c o r d i n g  to  ( 1 . 6 )  and  ( 1 . 7 ) ) .  

The n o n e q u i l i b r i u m  f i l t r a t i o n  v e l o c i t y  i s  d e t e r m i n e d  f rom ( 1 . 1 )  and  ( 1 . 5 )  a s  W = - - r n ~  
{~z ~ - ,~v [(z ~ ) p - -  (z ~ )o l }p~/z= - m l ~  { k v P  + , s  § ~ u  (z ~ )~} P~/z , and b e c a u s e  S = - ~ ( z n ) ~  f rom ( 1 . 5 ) ,  

W- -- m~kUP P~ . The velocity with zero acceleration (W t ~ z) reaches the maximum at the 
z 

crest of the wave, changes direction and decreases monotonically to zero at the tail of the 
waves; from (1.6), for z § O, (zn)t = Uz(zn)p = zconst § 0, satisfying the asymptotic taken 
with a = i. This latter is refined by the boundary conditions of the problem. 

In problems without initial conditions, the flow from (zn)p = const can be interpreted 

as a certain initial (phonon) flow W S along which there is an impulsive action at x = 0 at 
the time t = 0; the magnitude and direction of this flow are selected by starting from the 
conditions on the external tails of the waves turned to the domain of the initial (unper- 
turbed) state (~ = +oo wave 2, ~ = --~ wave 3, etc.). Here W s = mBS = -m~kU~[l -- Y,/(expY,-- 
l)]v/%; then W S = W~ <i 0 for waves 3 and 4 with Y, > 0, W S = W~ > 0 for waves 1 and 2 with 

Y, ~ 0, and by directing W S oppositely to P~ at the external tails of the waves, we have the 

initial flows Ws~ <0 in the domain x ~0 for waves 3 and 2, say, Ws~ 0 in x > 0, and there- 
fore wave 3 is propagated oppositely to the flow Ws~ and wave 2 is propagated along the flow 
Ws_ ~ (whereby the asymmetry of waves 2 and 3). 

Let us examine the behavior of the system (1.3) as ~ § O, when the nonequilibrium ef- 
fects vanish. The coefficient ~ in (1.3)-(1.5) is a small parameter in the highest deriva- 

tive and the passage to ~ = 0 results in the appearance of boundary layers in the neighbor- 
hoods: I) wave crest P = P,, z = 0, and II) tail zones of the waves P = 0, z = 0. From 
(1.5) for a boundary layer of the first kind z n = --kUP,(I -- (D)/• > 0 for i) U > 0; P, P, < 0; 

2) U < 0; P, P, > 0, and for a boundary layer of the second kind (at the tail of the wave) 
z n = kUP/~ O; 3) U > O, P ~ 0 and 4) U < O, P ~-~ 0. 

Taking account of z = • the phase trajectories are presented in Fig. 4 for the case 
mentioned (the dashes show the asymptotic of the branches at a sufficient distance from the 
boundary layers generating them). Let us present the solution (1.5) for ~, = 0 and conditions 
I and II of the form: 
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Fig. 4. Characteristic form of the limit waves from 
(1.8) and (1.9) and their corresponding phase por- 
traits. 

(D = 1 --[r~l  ~/(~-1), ( O , , ~ c O ~  1, 

(1 [r~]) nl(n-1), O~,~q)~C[)o, [~[ ~[~o[,  
(D = O, ~ > [ ~ o [ ;  r = ]keP( . i -~) / •  - 1)/n. 

(1.8) 

(1.9) 

On the outer boundaries ~ = ~o, P = 0, P~(~o) = 0 of (1.9), a smooth transition of the 
solution into the unperturbed domain P ~0 is assured for l~l = l~o]. 

Continuation of sections of the phase trajectories I((D0+ 0) and If(dO 0 + i) outside the 
limits of the corresponding boundary layers yields: for branch I, according to (1.8), for 

= ~o = +-i/r, P = 0, P~(~o) = •215 I/n ~ 0 and a smooth juncture (l.8)-with the unper- 
turbed domain (D~----0 outside ~[ > I~o [ is not assured; for branch II, according to (1.9), 
for ~ = O, P = P,, P~(O) = -+IkuP,/• I/n and the filtration velocity changes direction by a 
jump at the front. 

Let us note that if we pass to the limit ~ = +0 for combinations i, 2 in (1.6), then 
(DI~ i (S ~--kUP,) only for 0 < IPl < IP, l but P = 0, (D I = 0 at the point itself; therefore, 
here z n = kUP/z = 0 and (D~(~o) = 0, i.e., we eliminate the discontinuity (1.9) at the tail 
of the wave. Furthermore, if we pass to the limit ~ = +0 for the combinations 3, 4 then 

(DI~ 0 (S-----0) only for [P[ < IP*], but P = P, (D I = 1 at the point itself; therefore, on the 
front itself z n =--kUP,(I- (D)/~ = 0 and ~(P,) = 0, i.e., we also eliminate the discontinu- 
ity (1.9) on the wave front. (For generality, if we approach zero from the unstable side 

=--0, then the wave (1.8) of the type 3, 4 will change places with the waves (1.9) of the 
type i, 2 and conversely.) Each of the limit waves (1.8), (1.9) satisfies the mass conserva- 

tion integral relation resulting from (1.2) Irn~P, ~ (Dd~l----IXP~ ([(DI[ n- I(1)i(~o)In)d~/kg[, i.e., 
-~0 -L 

(1.8), (1.9) can be considered as generalized solutions (1.3)-(1.5) for ~ = O. 

The characteristic form of (1.8) and (1.9) is shown in Fig. 4, where the numbering of 
the curves corresponds to the combinations presented in the text. For small nonequilibrium 
effects 8 = IT[(zn) t- (zn)~]/z n] = i~U (zn)p/kz n- WS/Wo ] < i, we have in order of magnitude 
WS ~Wo, O(z)= IP,/~o, O(zp)= [i/~o[, and finally, ~ = In/Y,--1 I <i or [UI< 2XP,/~n 
for waves with Y, > O. 

To determine the divergent wave velocities and amplitudes, conservation conditions are 
used for the mass 2Mo and the initial momentum 2M concentrated in the neighborhood of x = O, 
and also the relationships connecting the flows W +- to the wave parameters mBS = W~. 

S 

Two dependences (the plus superscript is for the wave x + Ut, and the minus for x -- Ut; 
the subscript is the wave number 

_c .+ o ]• 2 IMol = mOof~ (IPTj-lz .4 + IP . l  I o,1); = ,( q~+dL 

21MI = mpo~(J~-,4 -~ Jl+,~); J+- = IkU+-P~ ]• ( 1 . 1 0 )  
+ 

and the two appropriate coupling equations W S = mBS determine four parameters of any pair of 

waves -- their amplitudes and velocities. If the initial momentum is of the nature of an im- 
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Fig. 5. Dependence 
of the relaxation 
time T (h) on the 
steady state mass 
flow rate G (g/min). 

pact (rapid pumping with subsequent discharge, or conversely), then the quantity Mo = 0 and 
"+ --j% from (I i0) i.e., a diverging symmetric pair of waves soliton-- we have j~ = --Jr or J3 = " ' 

antisoliton of type i, 2 or 3, 4. 

For the limit waves i, 2 (1.8) we have !j11,2 = 2n/(2n-- l)rl~2, for the limit waves 3, 
4 (1.9) --Ij[3,4 = 2(n--!)/(2n -- l)r3,a, and for the diverging pairs of waves 3-2 and 1-4 that 
each entrain half the momentum of the mass and the motion, we have the estimates 

IMIMol = U~ ,~.a.4 = U,  

lP . l a ,4  = [ ( 2 n  - -  1)  (kUl• n IMotl2nm~Oo]"! (2"-~, 

IP,ll. 2 = [(2n-- 1) ( n -  1) (kU/• II~ IMof/2n2m~9o] ~f<2~-1 >. 

The characteristic relaxation time of the nonequilibrium effects is estimated at the or- 
der of magnitude nv/kz = To because of the lack of experimental data, where To is the relaxa- 
tion time of a linear (n = i) nonequilibrium system [3] on the order of 2 h, and z is the 
characteristic pressure drop in the model. Setting z = 1 atm/m, we have nv/l = 2 atm'h/m; 
therefore, the amplitude is IP,I > !Unv/2~ I = 5 atm for the velocity IUi ~ ]M/Mol = 5 m/h. 

The corresponding class of problems of the theory of heat conduction and molecular dif- 
fusion is reduced to the results obtained in Sec. 1 by similarity. 

2. Thermoconvective Waves. We limit ourselves to the assumptions taken in the theory 
of heat and mass transfer in porous media for the determination of the energy conservation 
e q u a t i o n  ( e . g . ,  [ 1 ] ) :  

(cO), = - -  (q)~ - -  coWe~;  (c, co > 0), 

in which the heat conducting flux q is determined as z = l@xl: 

q = _ ~0 {z~ _ ~0 i(z~)t _ (f~)0 I} O~/z; ~~ = - -  
;LOz 

( 2 . s )  

2.2)  

If W, c, c ~ = const in (2.1), then the wave solutions (2.1), (2.2) reduce to those de- 
scribed in Sec. i; it is hence sufficient to make the following change in notation in all the 
relationships of Sec. i: z is replaced (§ by l~ U + v~ P(~) + T(~); ~ = x + Ut + ~ = 
x + gt; U § g, where g is the velocity of the temperature waves, and T is the difference be- 
tween the running and initial temperatures of the medium (~ : ua/a~-+-ga/O~; a/ax = a/a~-+o/~). 

if the direction of the convective flux W agrees with the direction of the divergent tem- 
perature waves g formed by a thermal pulse on the axis of the tunnel, e.g., when pumping fluid 
into strata, then k § 1 -- Wc~ If the direction of the convective flux is opposite to the 
direction of the temperature pulses diverging from the tunnel, as, e.g., in withdrawing fluid 
from a stratum, then k § 1 + Wc~ 

Temperature waves being propagated in the convective flux direction (with heating or 
cooling) are formed by the combinations: i) g> 0, W>0, T, T, <0; 2) g< 0, W <0, T, 
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T~ > 0; 3) g > 0, W > 0, T, T~ > 0; 4) g ~0, W d0, T, T~.~ 0, and hold for both systems 
w~th counteraction (~o > 0) for small Ic~ <i and wi~h acceleration (\~~ 0) for large 
ic~ >i. 

For temperature waves being propagated opposite to the convective flux, the above-men- 
tioned combinations 1-4 are formed only in systems with counteraction for any Ic~176 

For v ~ = 0 the temperature waves have limit solutions of the type (1.8) and (1.9). The 
results obtained in Sec. 2 are valid even for an appropriate class of convective diffusion 
problems. 

3. Remarks. I. We change the initial hypotheses: We consider the filtration flux 
to be an equilibrium function of an appropriate gradient of the form 

W ~ . W  o =--s (3 .1 )  

but the fluid density is nonequilibrium. In addition, let the density in (1.2) depend on 
the change in filtration velocity as 

P = Po [~P + ~ ( z'* )p/ml. ( 3 . 2 )  

The first component in (3.2) determines the equilibrium value of the density. Substi- 
tuting (3.1) and (3.2) into (1.2), we again arrive at the relation (1.5), and later (repeat- 
ing its solution under the same boundary conditions) at all the subsequent relationships 
(1.6)-(1.10) describing the soliton waves considered above. 

Continuity of the density as well as of the flux Win the whole ~-space including at 
= 0 and ~ = • where W = 0, is assured under the approach mentioned. At the tails of the 

hydrodynamic waves (P = O, ~ = • a nonzero equilibrium fluid density OS = Po~(zn)p/m = 
~-poWs/mU = po~kU[l -- Y,/(exp Y, -- I)]/X appears, where @S > 0 for the waves 2, 3 and O S < 0 
for the waves i, 4. 

Therefore, waves of the kind considered develop in both systems initially mobile and 
initially at rest with a density different from the equilibrium level. In this respect, the 
hypotheses about nonequilibrium fluxes and the nonequilibrium density are equivalent; in both 
cases the system possesses a certain additional energy (with respect to the equilibrium 
state) before the impulsive action, which is used in soliton motion. 

In oil--gas strata, the energetic states mentioned, which are associated with the non- 
equilibrium of the density, can be produced because of extraction (absorption) of the dis- 
solved, adsorbed gas, thermal action on the stratum, etc. 

2, Processing the results of investigations [3] on the filtration of certain non-New- 
tonian fluids in tubular models with constant pressure drops in the time between the input 
and output discloses a lower relaxation time close to the inverse dependence �9 = ~/%z taken 
for large values of the steady filtration velocity Wo = Xz n (Fig. 5; here G = WoPoF is the 
steady-state weight flow rate, and F is the tube section area). 

3. The approximation of ~(P) by a polynomial e~ + ?~, ~ =--y = ~/(i -- ~m)~% satis- 
fying ~(~m)=~m, ~(0)=~(I)=0, yield the solution (1.7) in the form ~ = sech2(~r~) 

for n = 2, where sech is the hyperbolic secant, ~ = {In [(exp Y,-- I) /Y,] }/Y~, ~m = --~m 
{ [(exp Y~. -- I)/Y,]~/Y* -- l}/(exp Y, -- i). For approximate estimates, ~ { se~h[• I (n-1)/n 

Inr~/( n n i)In-1]}n/(n-~); n > i. 

NOTATION 

W, q are filtration velocity and heat-conducting flux vectors; P, T, pressure-drop and 
temperature ~ymbols; X, X ~ mobility coefficients of the filtration and heat-conducting 
fluxes; ~, ~ , nonequilibrium coefficients of the mass and heat fluxes; c, c ~ volume specific 
heats of the saturated porous medium and the saturating fluid; p, B, porosity, density, and 
compressibility; n, k, exponents in the transport and similarity coefficient laws; U,g , 
velocity vectors of the hydrodynamic and thermal waves; Px, Pt, P~, a/Ox, partial derivative 
symbols; P,, T,, stationary P and T values at the wave crest; | OH, running and initial tem- 
peratures of the medium; x, t, ~, y, coordinates; and c, 0o, equilibrium specific heat of a 
porous medium and the fluid density at the initial pressure. 
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STABILITY OF A FILM FLOWING DOWN ALONG AN OSCILLATING 

SURFACE 

V. I. Baikov, A. T. Listrov, 
and Z. A. Shabunina 

UDC 532.516 

The linear approximation for a harmonically oscillating surface is used to ob- 
tain the condition of flow stability for a liquid film. 

The flow of films in heat and mass transfer devices is nearly always accompanied by 
wave phenomena at the gas--liquid boundary. The waves considerably affect the transfer pro- 
cesses, and, whenever possible, various adaptations are used which assist the formation of 
waves or turbulence of the liquid. For example, the vibration of a straight surface can, 
according to the experimental data [i], lead to an increase of the heat-transfer coefficient 
by 400%, in comparison with the usual gravitational flow. It is therefore of interest to 
determine the transition from the waveless regime of the flow to the laminar-wave regime, 
and then to the turbulent regime, i.e., it is necessary to establish the limits of stability 
of the particular flow regime in question. 

Let us assume that a film of viscous incompressible liquid flows down along a sloped 
surface which oscillates in its own plane with velocity Vocosw,T (Fig. i). The problem is 
described by the system of equations 

a~vl Or1 0~ pg cos 7; @Pd -- 0. (1) v ~ - 5 - §  
Ox2 OT Ox2 dxa 

In addition, we use the conditions of sticking at the wall, and the absence of tangen- 
tial stress at the free surface: 

dull 
Pd (0) = Patm; V'lx~=U = Vo costa, T; 0 x ~ z  x,=0= 0. (2) 

By s o l v i n g  the  sys t em of  e q u a t i o n s  (1) and (2 ) ,  we d e t e r m i n e  t h e  u n p e r t u r b e d  f low of  
the layer in the form 

1 1 
uo = ~ -  Be Fr -I (1 - -  yz) sin 7 q- - ~  exp (Aot) c h ( l + i )  By + 1 c h ( l - - i )  By 

ch (1 + i) {3 ~ exp (--  i(ot) ch (1 - -  i) {3 

p - -  g cos  7 + Pa 
Fr 

(3) 

or 

1 
Uo = - T R e F r - i ( 1 - - y i ) s i n y  + Acos(mt - - t~ ) .  

Here  Re = Vod/v  i s  t he  v i b r a t i o n a l  Reyno lds  number,  Fr = gd 
b e r ;  2~ 2 = wRe; 

(4) 

, vibrational Froud hum- 
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